Math 10A
Quiz 10; Friday, 8/3/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. TRUE False If two vectors are perpendicular to each other (they form an angle of 90°), then their dot product is 0 .

Solution: The dot product is $\vec{v} \bullet \vec{w}=|v||w| \cos (\theta)$ but $\theta=90^{\circ}$ so $\cos \theta=0$
2. TRUE False If we find two different solutions to $A \vec{x}=\vec{b}$, then $|A|=0$.

Solution: The number of solutions is $0,1, \infty$. Since there are at least two solutions, there are not 0 or 1 so there must be ∞ solutions so $|A|=0$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (2 points) Let $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 1 & 1\end{array}\right)$ and $\vec{v}=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$. Calculate $A \vec{v}$.

Solution:

$$
A \vec{v}=\left(\begin{array}{l}
3 \\
2 \\
4
\end{array}\right)
$$

(b) (6 points) Calculate A^{-1} using Gaussian elimination.

Solution: Using Gaussian elimination

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{I I I-I}\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{I+I I}\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 1 & 0 \\
0 & -1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right) \xrightarrow{I-2 I I I, I I-2 I I I}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & 1 & -2 \\
0 & -1 & 0 & 2 & 1 & -2 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{I I \cdot(-1)}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & 1 & -2 \\
0 & 1 & 0 & -2 & -1 & 2 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right)
$$

So the inverse is $\left(\begin{array}{ccc}3 & 1 & -2 \\ -2 & -1 & 2 \\ -1 & 0 & 1\end{array}\right)$.
(c) (2 points) Find \vec{x} such that $A \vec{x}=\vec{v}$. (Hint: Use your answer from above)

Solution:

$$
\vec{x}=A^{-1} \vec{v}=\left(\begin{array}{c}
7 \\
-4 \\
-2
\end{array}\right)
$$

